
OPEN ACCESS

ll
Article

Detecting Asymmetric Patterns and Localizing
Cancers on Mammograms
Yuanfang Guan,1,4,* Xueqing Wang,1 Hongyang Li,1 Zhenning Zhang,1,3 Xianghao Chen,1 Omer Siddiqui,1 Sara Nehring,2

and Xiuzhen Huang2

1Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
2Translational Research Lab of Arkansas State University and St. Bernard’s Medical Center, Jonesboro, AR 72467, USA
3Present address: AstraZeneca, 950 Wind River Lane, Gaithersburg, MD 20878, USA
4Lead Contact

*Correspondence: gyuanfan@umich.edu

https://doi.org/10.1016/j.patter.2020.100106
THEBIGGERPICTURE Breast cancer affects one out of eight women in their lifetime. Given the importance
of the need, in this work we present a region-of-interest-oriented deep-learning pipeline for detecting and
locating breast cancers based on digital mammograms. It is a leading algorithm in the well-received Digital
Mammography DREAM Challenge, in which computational methods were evaluated on large-scale, held-
out testing sets of digital mammograms. This algorithm connects two aims: (1) determining whether a
breast has cancer and (2) determining cancer-associated regions of interest. Particularly, we addressed
the challenge of variation of mammogram images across different patients by pairing up the two opposite
breasts to examine asymmetry, which substantially improved global classification as well as local lesion
detection. We have dockerized this code, envisioning that it will be widely used in practice and as a future
reference for digital mammography analysis.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
One in eight women develops invasive breast cancer in her lifetime. The frontline protection against this
disease is mammography. While computer-assisted diagnosis algorithms have made great progress in
generating reliable global predictions, few focus on simultaneously producing regions of interest (ROIs) for
biopsy. Can we combine ROI-oriented algorithms with global classification of cancer status, which simulta-
neously highlight suspicious regions and optimize classification performance? Can the asymmetry of breasts
be adopted in deep learning for finding lesions and classifying cancers? We answer the above questions by
building deep-learning networks that identify masses and microcalcifications in paired mammograms,
exclude false positives, and stepwisely improve performance of the model with asymmetric information
regarding the breasts. This method achieved a co-leading place in the Digital Mammography DREAM
Challenge for predicting breast cancer. We highlight here the importance of this dual-purpose process
that simultaneously provides the locations of potential lesions in mammograms.
INTRODUCTION

Breast cancer is the most common solid cancer, affecting one in

eight women. It is also the second leading cause of cancer

deaths amongwomen in the United States.1 Luckily, early detec-

tion of breast cancer can make a huge difference in prognosis.

The most popular detection method today is mammography.2,3

Around the globe, women older than 40 or 45 years are recom-

mended to start mammogram screening annually or biennially.4
This is an open access article under the CC BY-N
Many computational approaches have been explored previ-

ously for the identification of breast calcification and masses,

including traditional machine-learning classifiers,5–7 wavelet

transformation,8–10 K-means clustering,11,12 and active con-

tour models.13,14 In recent years, deep learning has surpassed

traditional techniques in a large number of computer vision

applications.15,16 For many tasks, deep-learning approaches

have reached the accuracy of human experts.17,18 Many

efforts have also been made to develop deep-learning
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algorithms for detecting breast cancers based on mammo-

grams.19–24

Revisiting and reflecting on the CAD (computer-assisted

diagnosis) field of mammography, we see new opportunities

to further improve the utility of the progress that has been

made in this field. First, there is a need to synthesize region

of interest (ROI)-based algorithms, which are informative to bi-

opsy, and global classification algorithms, which are important

for risk stratification. Additionally, prior to the deep-learning

era, how to utilize the asymmetric information to identify

lesions in mammography using traditional machine-learning

or rule-based approaches has been explored.25–29 These

methods typically rely on image registration of the left and

right breasts and correct for the variance of the sizes and po-

sitions between two breasts. Subsequently, the texture differ-

ences between the aligned breasts are quantified, including

features such as roughness, brightness, and directionality.

The areas that differ significantly for these features are consid-

ered to be ROIs. These methods have reported significant per-

formance improvement when referencing the target breast

with the opposite breast. However, it remains unclear how to

integrate the information of asymmetry into deep neural

network models until today and whether or not it can improve

the prediction performance.

We also see remaining challenges in mammogram interpre-

tation: the high resolution of mammogram images and the het-

erogeneity of density and texture of human breasts.30,31 The

high resolution of the image is necessary for the detection of

tiny calcification dots that are smaller than a millimeter. On

the other hand, human breasts are heterogeneous in their

presentation: some are dense, others are fatty, and some

naturally have calcifications spreading throughout the breast.

It is therefore challenging to establish a model accounting

for this heterogeneity.

Seeing the above opportunities and challenges, in this work

we present an ROI-oriented deep-learning pipeline for detecting

and locating breast cancers based on digital mammograms. It is

a leading algorithm in the well-received Digital Mammography

DREAM Challenge, in which computational methods were eval-

uated on large-scale, held-out testing sets of digital mammo-

grams.32 This algorithm connects two aims: (1) determining

whether a breast has cancer, and (2) determining cancer-associ-

ated ROIs. Particularly, we addressed the challenge of variation

of mammogram images across different patients by pairing up

the two opposite breasts to examine asymmetry, which substan-

tially improved global classification as well as local lesion detec-

tion. We have dockerized this code, envisioning that it will be

widely used in practice and as a future reference for digital

mammography analysis.
METHODS

Overview of the Workflow

The DREAM Digital Mammography Challenge was designed in a unique

environment where the participants are not allowed to observe the training

examples, but only the global label of whether a breast has cancers or

not in three separate sets of data: training, validation, and final test. This

design protects the privacy of the patients. In this study, we present the

model performance based on experiments on the training set from the

challenge.
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In digital mammography images, cancer regions occupy a tiny proportion of

the entire image. Thus, attempting to train a classification model solely based

on global labels of the images is extremely challenging. We therefore sought

public datasets that had locality information regarding breast cancers to

initialize ROI-based algorithms for detecting and classifying breast cancer

images. The INbreast data is a widely used, well-characterized, hand-labeled

dataset that includes a total of 410 images.33 The image pixel size is 70 mmwith

14-bit grayscale depth, and the image sizes are either 3,328 3 4,084 pixels or

2,5603 3,328 pixels, depending on the compression plate used for the acqui-

sition. Both INbreast and Digital Mammography DREAM Challenge data are

digital mammograms, with the latter containing over 640,000 de-identified

images ranging from 3,328 3 2,560 to 5,928 3 4,728 pixels.

We partitioned the DREAM data into three parts, denoted Part 1 (40%), Part

2 (40%), and Part 3 (20%), to serve the eventual purpose of identifying and

locating malignancy (Figure 1A). This partition is done at the individual level.

The reason for partitioning the data is to avoid contamination between the

feature extraction, false-positive classification, and feature assembly step.

Of note, the performance of individual models was estimated by data within

their associated partitions.

Globally, we built four models for feature extraction (Figures 1B and 1C). The

INbreast dataset served to train the initial detection models to locate the re-

gions of interest (model 1, the calcification detection patch model; model 2,

the mass detection whole-image model) (Figure 1B). In building model 2

(mass detection model), the input images are paired breasts as the first chan-

nel and the horizontally flipped paired images as the second channel. We

found this pairing substantially improved the performance of the model (see

Results). When the patch model 1 was applied to the images, we used it as

amoving window to identify all calcifications in the breasts. Using these detec-

tionmodels, we retrieved ROIs and their corresponding locations from the Part

1 data. These locations can either be cancerous or non-cancerous. Because

we know the cancer labels of the breasts associated with these locations,

this retrieval provided patches of true-positive examples and false-positive ex-

amples, and allowed us to train two additional models that classified a local

patch (Figure 1C). Model 3 is the calcification false-positive area detection

patch model, i.e., it detects large calcifications, or calcification in ducts, which

are unlikely to be cancer. Thismodel was used to lay on top of the regions iden-

tified in model 1 and mask out regions where there are supposed to be false

positives. By laying model 3 on top of model 1, we obtained themaximal count

of calcifications in a local patch, and the maximal size, across all patches.

Model 4 is themass true-positive patchmodel, which gave a score for whether

an identified mass is likely to be true positive. It is applied to the largest mass

area. Models 1–3 are for fundamentally identifying ROIs and we therefore used

U-Net structures, which are designed for semantic segmentation. For Model 4,

we used an end-to-end classification network.

Models 1–4 together can generate multiple quantitative features in Part 2

of the data including the size and count for calcification (after removing

false-positive calcifications), size, and true-positive likelihood of the largest

mass area identified. To predict the likelihood of a breast having cancer, we

also included the corresponding features in the opposite breast and found

that this step improves model performance (see Results). These quantita-

tive features are then used to train a random forest model, i.e., model 5,

based on Part 2 of the training data (Figure 1D). Performance estimation

and model tuning and comparison were carried out by using models 1–4

for individual feature extraction and model 5 for feature integration on

Part 3 of the images.

Color Profile Mapping between Linear and Sigmoid Scale to

Homogenize INbreast Data to DREAM Data

The dicom file header in the INbreast database indicates that the original scale

of the images was linear compared with the DREAM data, where the scale is

sigmoid (i.e., has undergone contrast stretching). Thus we first mapped the

INbreast data toward the sigmoid scale, which was necessary in accounting

for the different modalities in equipment. As we do not know the parameters

for contrast stretching, the idea is to create a percentile-wise match between

the INbreast data and the DREAM data and fit a sigmoid curve between the

two percentiles.

Specifically, we first separated the images into craniocaudal (CC)

view and mediolateral oblique (MLO) views. As the images of the two
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Figure 1. Overview of the Workflow of the Algorithm

(A) Data sources and training data partition.

(B) Training model 1 and model 2 with INbreast data, then using model 1 and model 2 to predict ROI regions in DREAM data Part 1.

(C) Training model 3 and model 4 using ROI-labeled DREAM Part 1, then using models 1, 2, 3, and 4 to extract features from DREAM Data Part 2.

(D) Training model 5 using features extracted from DREAM Part 2, then using DREAM Data Part 3 to evaluate the whole model.
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views show very different pixel value distributions, the mapping was sepa-

rately done for these two views. In creating a percentile profile, the first

step is to identify the breast areas because breasts vary substantially by

size, which will lead to biases in density estimation. We dilated each image

using a 70 3 70 Gaussian kernel and then created a binary mask threshold-

ing at 200 (original pixel values ranging from 0 to 4,095). Thereafter, we

identified the largest connected component of each image, which repre-
sents the breast area. Using this mask, the breast can be cropped to

make the surrounding area 0 (Figure 2A). We then generated the percentile

distribution A of the pixel values within the breast areas for the INbreast

data at 0.001 resolution, in the format of percentile: pixel value (e.g.,

14.400%: 1,221; 14.500%: 1,222; 14.600: 1,223), going from 0% to

100%. Similarly, we generated the percentile distribution B from 500

randomly selected images from the DREAM data. We fit the percentile
Patterns 1, 100106, October 9, 2020 3
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distribution A into percentile distribution B with the following sigmoid

function:

y =
c

1+e�4ðx�aÞ=b ;

where x is the pixel values in percentile distribution A, y is the corresponding

pixel value in percentile distribution B, and a, b, and c are parameters to be

fit in this sigmoid function (Figure 2B). We used Scipy’s optimization function

curve_fit to find the values of these parameters with an initiating search point

of 1,800, 1,024, and 4,900, which correspond to themean of the distribution B,

the mean of the distribution A, and the potential largest range the pixel values

can reach during the parameter fitting iterations, respectively. The fitted pa-

rameters are stable with small variations of these initiating search points. We

then applied the above formula to the original images of INbreast, separately

for CC andMLO images, and created a new set of INbreast images that match

the pixel intensity distribution of the DREAM dataset (Figure S1).
Training and Testing Augmentations andModel Ensembling to Avoid

Overfitting and Improve Accuracy

As discussed above, to accurately predict breast cancer we developed four

types of neural networkmodels to capture different features of digital mammo-

grams: model 1, calcification detection model; model 2, mass detection

model; model 3, false-positive calcification detection; model 4, classification

of the malignancy for mass patches. Overfitting is a shared problem in building

deep-learning models. Thus, aggressive data augmentation was applied to

each of the above models (Figure 2C). For model 1 and model 3, we used

0�–360� random rotation and left-right flipping for the input patches, because

the orientation of the calcification does not affect calcification detection. How-

ever, scaling was not used because the size of the calcification is a strong in-

dicator of whether it is malignant or not. For model 2, left-right flipping was

applied, assuming the two breasts of a person are equivalent. We also applied

scaling between 0.8 and 1.3, accounting for variations of breast size across in-

dividuals. No rotation was applied because this model is intended for the entire

breast images, which is often well aligned and positioned in digital mammo-

grams. For model 4, because it is a patch model and the direction of the

mass does not affect its malignancy, we applied 0�–360� random rotation of

the input patches.

We carried out test set augmentation to further improve prediction stability

(Figure 2C). For model 1 (calcification detection model), model 3 (classification

of the malignancy of the calcification patches), and model 4 (classification of

the malignancy of mass patches), we rotated the testing patches by 90� four
times and thus generated four patches. We then made predictions for each

patch and used the average prediction values of each pixel across the rota-

tions (model 1 and model 3), or for the patch (model 4) obtained through these

four rotations of images, and uses these four images to generate four predic-

tions and average as the final assembled value. Unlike patches, top-down flip-

ping of a paired breast image does not generate equivalent images. Thus, for

model 2 we left-right flipped the images to generate two sets of predictions

and took the average as the final prediction.

For all of the above deep-learning models, we used a nested training strat-

egy by subsampling and assembling in order to leverage the whole training

partition and improve the robustness of models. This is a commonly used

strategy in machine-learning challenges to increase the diversity of the model

with the limitation of the set of training data. Specifically, for each of themodels

1–4, we trained five submodels in parallel based on different training and vali-

dation data partitions (75% and 25% of the Part 1 data described above). The

validation dataset was used to monitor the prediction loss, based on which the
Figure 2. Image Processing for Deep Learning Models

(A) Calculating percentile distribution of breast areas.

(B) Color profile matching of INbreast images to DREAM images.

(C) Augmentation methods of training and test sets.

(D) Orientation detection.

(E) Image pairing.

(F) Performance evaluation of the three ways to integrate asymmetric information w

2-C, paired left-right breasts with the horizontally flipped image as the second c
training process was monitored and the best-performing model was saved.

Finally, the predictions from five submodels were averaged as the final predic-

tion of the model.

We extracted the following features from the breast under investigation and

its opposite breast: the maximal size of a mass detected in a breast, the likeli-

hood of this mass to be malignant, the maximal calcification count, and total

areas of a local patch.

Statistical Test of Significance of Performance Difference between

Two Models

In many locations of this paper, we present and compare performance values

of two methods, or two sets of feature input. To estimate the statistical sig-

nificance of the differences in performance for each pair, we bootstrapped

the examples for 10,000 times and computed the p values. Standard

deviation and confidence intervals are calculated from the 10,000-time

bootstrapping.

RESULTS

Improving Mass Detection by Normalizing Density and
Leveraging the Asymmetry of Breasts
Mammographic images are diverse in terms of the fraction of

breast regions in the images and distribution of pixel intensity.

Directly inputting the original images without normalization may

result in dense breasts being classified as masses. We first

segmented the breast areas by identifying the largest connected

component in each image. We then calculated the average and

standard deviation of the pixel values within the breast regions

for normalizing the images for the input for mass detectionmodel

(model 1).

While most left breasts have their nipples pointing toward the

left and right breasts have their nipples pointing toward the right,

occasionally, there are left-right flipped images. In the DREAM

dataset, 100% of the annotations of the ‘‘FieldOfViewHorizontal-

Flip’’ is ‘NO,’ but we still detected rare cases where the images

are flipped. Thus we sought alternative approaches to detecting

flipping. By calculating the average values of 10%–20% of the

left and the right side of the original images, the side with higher

average value was determined to be closer to the chest wall (Fig-

ure 2D). When we detected an image whose expected left-right

orientation was inconsistent with the Dicom header, we horizon-

tally flipped the image. This step was carried out in order to pair

the two images together, with the chest wall side toward themid-

dle (Figure 2D).

To detect an areas of interest, applications in other computer

vision areas point us to semantic segmentation algorithms such

as U-Net and fully convolutional networks.34,35 We used U-Net

for mass detection (Figures 1B and S2–S6). The U-Net architec-

ture consists of an encoder comprising convolution-max-pool

blocks that extracts information from the images, and a decoder

consisting of deconvolution blocks that generates prediction of

the locality of the ROIs.
ith AUC in detectingmass: single, single images; 1-C, paired left-right breasts;

hannel.
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Table 1. Summary of Feature Extraction Networks Used in the Model

Input Size Model Type Input Type

Total

Models

Training Set

Augmentation

Testing Set

Augmentation

Model 1. Segmentation

model for detecting

calcifications

256 3 256 full

resolution

Seg-net v3 patch 4 rotation, flip rotation

Model 2. Segmentation

model for detecting

masses

pairs of 512 3 256 Seg-net v6 with double input whole

paired images

2 scaling, left-right flip left-right flip

pairs of 356 3 178 Seg-net v3 with single input 2 scaling, left-right flip left-right flip

pairs of 356 3 178 Seg-net v6 with double input 2 scaling, left-right flip left-right flip

pairs of 256 3 128 Seg-net v6 with double input 2 scaling, left-right flip left-right flip

Model 3. Segmentation

model for false-positive

calcification detection

256 3 256 full

resolution

Seg-net v3 patch 4 rotation, flip rotation

Model 4. End-to-end

classification model for

predicting malignancy

score

512 3 512 full

resolution

end-to-end CNN local patch

centered at the

detected mass

8 rotation, flip, scaling rotation, flip

Ensemble model random forest
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It has been reported that the asymmetric regions of paired left

and right breast images contribute to the detection of breast

cancer based on hand-crafted features from digital mammo-

grams.25–29 Yet it remains unclear how to leverage this asym-

metric information to improve prediction performance in neural

network models. Here we investigated multiple approaches to

integrate this information into our deep-learning models: (i) ‘‘sin-

gle’’ refers to the model using a single breast image as the input;

(ii) ‘‘1-channel’’ refers to the model using a pair of left and right

breast images as one channel; and (iii) ‘‘2-channel’’ refers to

the model combining two images of paired breasts as two chan-

nels, and the paired image is horizontally flipped in the second

channel (Figure 2E). To avoid a confounding factor of perfor-

mance comparison involving the number of samples, we main-

tained all models with the same amount of input. For example,

suppose we have n individuals in the training set, then 2n images

are used in training the model, and the only difference is how we

combined the 2n images as the input.We found that although, as

expected, the features derived from different methods are corre-

lated (0.9188 between single and 1-channel, 0.8054 between

2-channel and single), there are cases where the extracted fea-

tures are drastically different (Figure S7).

Steady improvement was achieved when we stepwisely

added asymmetric information into the models. We estimated

the prediction performance by area under the curve (AUC) for

the mass areas identified by the above three approaches versus

the global gold standard of the cancerous status of the breasts.

Of note, later there will be many other features added into the

final model, and thus the AUCs presented here are much lower

than the eventual AUC. Nevertheless, they can serve as a fair

comparison for the three mass segmentation models (i) to (iii).

The performance of these three approaches is shown in Fig-

ure 2F. Compared with the ‘‘single’’ approach without the

asymmetric information (AUC = 0.672), both the ‘‘1-channel’’

and ‘‘2-channel’’ approaches achieved higher AUCs of 0.692

(p = 0.0569 compared with ‘‘single’’) and 0.708 (p < 0.0001

compared with ‘‘single’’), respectively. The 2-channel approach

has the highest AUC, since it directly contrasts and captures the
6 Patterns 1, 100106, October 9, 2020
differences between two breasts through stacking the two im-

ages as two channels. This result indicates that comparing and

contrasting the asymmetric information from two breasts signif-

icantly improves the detection of masses in mammograms. We

used this 2-channel approach in our final mass detection model.

Such mass detection algorithm is carried out on resized and

paired breast images, and included multiple rescaled sizes of

256 3 256, 384 3 384, and 512 3 512 to increase the diversity

of the models and, thus, robustness (see Table 1 for complete

list of all models), as we found that multiple resolutions stably

improved overall performance of mass detection.

Full-Resolution Mass Malignancy Models Provide
Additional Information to the Mass Segmentation
Models in Detecting Breast Cancers
In the previous section, we described models to locate masses

in paired mammograms. This segmentation network is unable

to differentiate benign and malignant masses. Therefore, we

built a secondary model for predicting the malignancy of the

top-predicted mass area for each breast. To differentiate the

false-positive masses against the true positives, we took

advantage of full-resolution local patches and trained a classi-

fication convolutional neural network (CNN) to predict whether

a locally cropped 3.6 cm 3 3.6 cm (512 3 512 pixels) area

centered at the detected mass is cancerous. Due to the lack

of a patchwise training label, a gold standard was created

based on the global label of the images. Predicted masses in

negatively labeled breasts are identified as the negative exam-

ples (Figure 3A), and masses detected in positive breasts are

identified as positive examples. For each breast, we predict

the malignancy of the patch centered at the biggest mass.

This classification model has an AUC of 0.725 when evaluated

on the entire breast level, compared with 0.708 for the mass

detection model, indicating that full-resolution local patches

could provide additional information in classifying whether a

detected mass is malignant (Figure 3B). This probability score

of the malignancy of the local patches is used as an input

feature in the final ensemble model.
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Full-Resolution CalcificationModels Give the Number of
Microcalcifications in Local Patches
Given a screening digital mammogram, our end goal is to identify

the maximal number of calcifications in a 1.8 cm 3 1.8 cm

(256 3 256 pixels) patch, because the presence of a cluster of

microcalcifications is an important indicator of breast cancer.

Specifically, from the top left corner of the image, 256 3 256

pixels were cropped out as the first patch, and the sliding win-

dow moved to the right for 128 pixels and captured another

256 3 256 patch until it reached the rightmost side (Figure 3C).

If the rightmost patch could not have a clear cut, the window

bounced back to make the right edge of the original image

also to be the right edge of the patch (Figure 3C). The similar

moving-window approach was applied vertically to generate

multiple patches in a single mammogram.

Instead of using pixel counts, we counted the microcalcifica-

tion dots. A pixel with all its adjacent pixels, as long as they are

predicted by the U-Net to be positive, is counted as one dot.

Therefore, one microcalcification may contain more than one

pixel. The calcification model was trained using the sigmoid-

transformed INbreast dataset. The INbreast dataset provided

over 6,000 calcification annotations.33 Yet these annotations

included large calcification areas and non-cancerous calcifica-

tions. Thus, wemanually labeled all images for suspiciousmicro-

calcifications that are present in the breasts and are labeled to be

positive of cancers. Furthermore, to exclude the microcalcifica-

tions that are unlikely to be cancers, we set up an upper limit as

35 pixels, with only the dots containing fewer pixels as valid

counts. From the 410 INbreast images, we obtained 100,129

patches, including 98,808 negatives and 1,321 positives. During

the training process, an oversampling operation was performed

to increase the number of positive patches to match the amount

of negatives. The training set was therefore balanced, containing

approximately equal numbers of positive and negative patches.

We trained U-Nets to identify the microcalcifications,

achieving an AUC of 0.95 on the testing dataset in classifying

whether a patch contains microcalcification (Figure 3D). Of

note, this AUC is a reflection of how accurately we can extract

calcifications, rather than how accurate the global cancer detec-

tion method is, which will be discussed in later sections.

Microcalcifications exist in almost all breasts. However, large

calcifications and calcifications regularly deposited in the milk

ducts are unlikely to be cancers (Figure 3E). A separate segmen-

tation model was thus trained to identify those false-positive

calcification areas. In order to do so, we used the calcification

models to make predictions on the DREAM training set Part 2,

and separated the calcifications into true positives and false pos-

itives according to the global label of the breasts. False-positive

calcification models, when examined by patches, had an AUC of

0.90 (Figure 3F). The calcification features in the eventual
Figure 3. Generation and Performance of Patch Models

(A) Examples of false-positive mass.

(B) AUC of the mass local malignancy model.

(C) Using sliding windows to exhaustively find the patches with most calcificatio

(D) AUC of the calcification segmentation model.

(E) Examples of false-positive calcifications.

(F) AUC of the detection of false-positive calcification patches model.

(G) Summary of stepwise improvement of the breast cancer prediction model.
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ensemble model were the predicted maximal calcification

counts and areas in the patcheswithin a breast (cut at probability

of 0.5), masked by the false calcification predictions (if the pixel

prediction value is bigger than 0.5). The calcification model per-

forms at 0.75 AUC on the DREAM dataset when used by itself

and evaluated with the global label of the breasts. This value is

comparable with the AUC of 0.72 when we evaluated mass

models alone, indicating that we detect cancers by each mech-

anism (calcification or mass) about an equal number of times.

The top two panels of Figure 3G summarize the performances

of models and overall performances mentioned above: only

using calcification models (model 1 and model 3) achieves an

overall performance of 0.75, while only using mass models

(model 2 andmodel 4) achieves an overall performance of 0.725.

Assembling Individual Features Reveals that Integrating
Information from the Opposite Breast Improves Model
Performance
In clinical practice, a suspected abnormal region may be deter-

mined normal when a similar suspicious appearance occurs in

the other breast of the patient. For example, scattered calcifica-

tions across both breasts are likely to be benign. Inspired by this

phenomenon, we first examined whether correlation of various

features exists between the two breasts across individuals. Intu-

itively, if two breasts are independent, correlations of 0 are

expected. However, the correlation of predicted mass size be-

tween two breasts was 0.135, the correlation of local malignancy

of the biggest mass 0.276, and the correlation of the maximal

calcification number in a patch 0.295 (Figure 4A). These positive

correlations indicate that if in one case both breasts have a lot of

calcifications, this case is much less likely than the other case

where a similar amount of calcifications only appeared in one

of the breasts. Thus, taking into account the information from

the other breast can be helpful.

We next dissected whether such correlation changes on

comparing the cancer population and the healthy controls. We

found that for mass size, the correlation of healthy controls is

0.160, while that of cancer patients is 0.039; for maximal calcifi-

cation numbers, the correlation of healthy controls is 0.337, while

that of cancer patients is only 0.051. This result corroborates the

hypothesis that asymmetry is more apparent in cancer patients

(Figure 4B).

We thus constructed twomodels built with random forest, one

using the features extracted from only the breast under study

and the other one using both breasts, to predict the probability

of cancer from breast mass area, local malignancy, calcification

counts, and area. Taking in the features of both breasts can

improve the overall performance measured by AUC from 0.844

to 0.856, although barely statistically significant (p = 0.0507, Fig-

ure 4C). The specificity at 80% recall improved from 0.768 to
n.
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0.780 (Figure 4D), which is lower than community-practice radi-

ologists’ specificity of 90.5% on this dataset.32 However, for

both AUC and specificity this algorithmwas a co-best performer,

and an ensemble of this and other top algorithms with the radiol-

ogist’s algorithm can further improve on the radiologist’s perfor-

mance.32 In Figure 4E, we plotted the partial AUC above different

levels of recall. This result, together with the comparison results

from the mass model (single breast versus paired breasts), sup-

ports the value of the information from the opposite breast in pre-

dicting breast cancers with deep learning.

The results of this part are also summarized in Figure 3G

(bottom panel). When all the five models are combined together,

using information from one breast leads to a performance of

0.844, while using information from two breasts leads to a perfor-

mance of 0.856. As a whole, Figure 3G provides a summary of

the stepwise improvement of the overall model performance.

Availability of Code and Docker Implementation
In order for the radiology community to use this algorithm in

practice, we deployed the prediction part into a portable Docker

(Figure 5). It is lightly weighted in terms of computations and can

run on a computer without access to a graphics processing unit

(GPU). The Docker consists of the following parts to address

practical issues involved in mammogram analysis. First, the

header file is read, and images with linear scale are transformed

to sigmoid scale. Second, to eliminate the noise introduced by

artifacts such as text labels, the program excludes the area

outside of the breast by selecting only the largest connected

component within the binary mask. Third, the deep-learning

model takes in the processed image to extract features for

mass areas, local malignancy, calcification counts, and calcifi-

cation areas, which are then used to generate a highlighting
map of the ROIs. Finally, the Docker en-

sembles all ROIs and generates a final pre-

diction score, and visualizes the areas that

lead to a positive prediction.

Since INbreast data is already used

in training and DREAM data do not allow

distribution, we found another dataset,

the breast cancer digital repository

(BCDR).36 This dataset only has a very

small number of cancer images, in .jpg

format. Nonetheless, we used it to make

several demonstration graphs shown in

Figures 6 and S8. In the visualized image,
calcification areas that are difficult to spot by the human eye can

be identified by the algorithm, and false-positive areas can be

identified and ignored by the model (Figures 6 and S8). Thus,

the model will offer direct visualization of the suspicious areas

as well as a prediction score. This could supplement the radiol-

ogist’s diagnosis and help to identify subtle changes they may

have missed.

DISCUSSION

In this study, we present a machine-learning method that simul-

taneously detects and locates breast cancers on digital mam-

mograms and gives a global classification score. In addition to

image preprocessing and multiple customized deep CNN

models, this model leverages the asymmetric information

regarding a pair of breasts from the same subject to improve

the detection accuracy.

In this work, we report a set of approaches to integrate two

breast images into neural network models and demonstrate

that pairing of the two images as two channels improves the

model performance. Meanwhile, we report strong correlations

between extracted features from two breasts across patients.

Using features from both breasts achieved the highest predictive

performance.

One important future work is to test this algorithm in a large-

scale dataset that allows hand-labeling of the training data.

The starting training set INbreast used in this study is relatively

small, and was collected for known cancer patients rather than

a screening population. INbreast was chosen as the starting

point, as it was the only digital mammography database avail-

able to the public at the time, and DREAM’s setup helps us to

glean insight from a typical casewhere human subject-protected
Patterns 1, 100106, October 9, 2020 9



Malignancy 
prediction score

Areas lead to 
positive prediction

Augmentation

Input Image

Mass Areas

Local Mass Malignancy

Calcification Areas & Counts

Local Calcification Malignancy

sigmoid scale 
transformation

crop out 
breast area

Model 1

Model 2

Model 4

M
od

el
 5

Model 3

Augmentation

Paired Breast Image 
(2-C)

Sliding Window 
Image Patches

1st 2nd ...

...

Augmentation

Augmentation

Features

Figure 5. Overview of Docker Deployment
We implemented and deployed the algorithms using the Docker system. Briefly, a Docker container is a lightweight virtual machine that contains not only

the software but also the required libraries and environments to successfully run the software. This Docker container includes the image preprocessing
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data do not allow direct annotation or observation. This is more

challenging compared with the cases where the model devel-

opers are allowed to label the training images coming from the

same population as the test. We envision that applying the

same pipeline to a similar screening population can drastically

improve the performance.

During the Digital Mammography DREAM Challenge, deep-

learning methods were widely used by other leading teams

around the globe, including single-shot multibox detector and

Faster RCNN. We applaud the ingenuity of these methods in

calculating losses on both bounding boxes of potential

cancerous regions and the overall classification of ROIs. Simi-
Original Image

Original

CaOriginal

Mass area

Calcification area

Maximal 
Likelihoo
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larly, in our analysis pipeline, we build both the segmentation

and classification neural networks for masses and microcalcifi-

cations. A difference in our approach resides in the fact that

pixel-level ROI maps are provided, whereas methods such as

Faster RCNN focus on rectangular boxes of mass or calcifica-

tion. Based on these pixel-level annotations, we further calcu-

lated features including the sizes of masses and numbers of

calcifications, which could be useful for other clinical studies.

This makes the model less like a black box and more useful

when clinicians try to interpret the results for patients. However,

the separation of ROI identification and classification was en-

forcedmainly due to the limitation of GPUmemory, which cannot
lcification Visualization

Mass Visualization

calcification count in 1.96X1.96cm: 12 
d of cancer: 0.98

Figure 6. An Example of Model Output in the

BCDR Database

Red regions in the visualized image indicate calci-

fication areas. See also Figure S8.
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fit two full-size mammographies. With the enlargement of GPU

memory in the coming years, it is foreseeable that ROI identifica-

tion and whole-breast classification can be seamlessly unified

into a single network structure.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Yuanfang Guan, gyuanfan@umich.edu.

Materials Availability

The study did not generate new unique reagents.

Data and Code Availability

INbreast data can be acquired from http://medicalresearch.inescporto.pt/

breastresearch/index.php/Get_INbreast_Database. BCDR data can be ac-

quired from https://bcdr.eu/information/about. Models used in this paper are

implemented in Docker (https://www.synapse.org/#!Synapse:syn11313722).
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